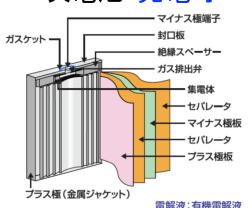

リチウム電池 一次電池・充電不可

記号	電池系	正極	電解液	負極	公称電圧
В	フッ化黒鉛リチウム電池	フッ化黒鉛	非水系有機電解液	リチウム	3.0
С	二酸化マンガンリチウム電池	二酸化マンガン			3.0
Е	塩化チオニルリチウム電池	塩化チオニル			3.6
F	硫化鉄リチウム電池	硫化鉄			1.5
G	酸化銅リチウム電池	酸化銅(II)			1.5

正極: $Mn^{\text{IV}}O_2 + Li^+ + e^- \rightarrow Mn^{\text{III}}O_2(Li^+)$

負極: $Li \rightarrow Li^+ + e^-$

全反応: $Mn^{\mathbb{IV}}O_2 + Li \rightarrow Mn^{\mathbb{II}}O_2(Li^+)$


CR2032

C: 二酸化マンガン

R:円形

直径20mm、3.2mm

リチウムイオン電池 二次電池・充電可

正極: $Li_{1-x}CoO_2 + xLi^+ + xe^- \rightarrow LiCoO_2$

負極: $Li_xC_6 \rightarrow C_6 + xLi^+ + xe^-$

全反応: $Li_{1-x}CoO_2 + Li_xC_6 \rightleftharpoons LiCoO_2 + C_6$

スマホ用

モバイル バッテリー



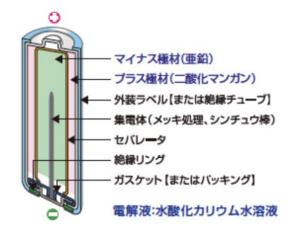
リチウムヨウ素電池

リン酸鉄リチウムイオン電池

バッテリーの種類	リン酸鉄リチウム	三元系リチウム 🔦	NCA系リチウム
正極材	・リン・鉄・リチウム	・ニッケル・マンガン・コバルト	・ニッケル・コバルト・アルミニウム
負極材	黒鉛	黒鉛	黒鉛
最低放電温度	-20°C	−10°C	−20°C
熱分解の温度	700°C	200°C	200°C
サイクル回数(寿命)	2,000~4,000回	約800回	500回
自己放電	1ヶ月で1%	1ヶ月で5%	1ヶ月で5%
重量	重い	軽い	軽い
エネルギー密度	低い	高い	高い
販売価格	高い	安い	高い
主な用途	・電動工具・電動自転車・蓄電システム	·電動自転車·医療機器·自動 車産業	▪医療機器▪自動車産業
特徴	熱暴走が起こりづらく、安 全性が高い	コバルト系の安全性を高め、 車載向けに改良	高エネルギー密度化に優れ、発熱量 が少ない

マンガン電池

懐中電灯やリモコンなど

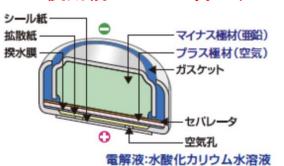


・塩化亜鉛水溶液 (塩化亜鉛型電池)
8MnO₂ + 8H₂O + ZnCl₂ + 4Zn
 → 8MnOOH + ZnCl₂ • 4Zn(OH)₂

・塩化アンモニウム水溶液 (塩化アンモニウム型電池) $2MnO_2 + 2NH_4Cl + Zn$ $\rightarrow 2MnOOH + Zn(NH_3)_2Cl_2$

アルカリ電池

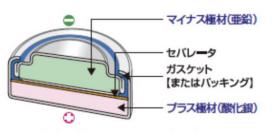
マンガン電池の約2~5倍長持ち



 $2MnO_2 + H_2O + Zn \rightarrow 2MnOOH + ZnO$

空気亜鉛電池

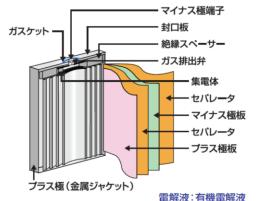
正極材料に空気中の酸素を使う補聴器や気象観測用の分野


使用前にシール剥がす

 $1/2O_2 + Zn \rightarrow ZnO$

酸化銀電池

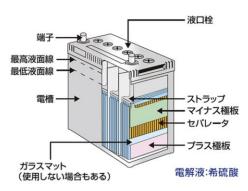
寿命直前まで電圧保持 カメラやクォーツ時計に利用



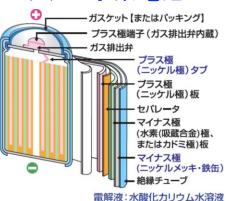
電解液:水酸化カリウムまたは水酸化ナトリウム水溶液

$$Ag_2O + Zn \rightarrow 2Ag + ZnO$$

リチウムイオン二次電池


携帯電話、デジタルカメラ、ノート パソコン、電気自動車

 $Li_{1-x}CoO_2 + Li_xC_6 \stackrel{=}{=} LiCoO_2 + C_6$


鉛蓄電池

自動車や二輪車用バッテリ バックアップ電源

 $PbO_2 + Pb + 2H_2SO_4 = 2PbSO_4 + 2H_2O$

ニッケル水素電池・ニカド電池

AV機器、雷動工具、ハイブリッド自動車

・ニッケル水素電池

非常証明

・二カド電池

出典: https://www.baj.or.jp/battery/knowledge/structure.html