①https://quantum-computing.ibm.com/ にアクセス

⑧以下の量子回路を作成して、実行

circuit=QuantumCircuit(2)

#量子回路の組み立て

_circuit.h(0) #アダマール行列を使用 circuit.cx(0,1) #CNOTを使用

測定

circuit.measure_all()

from giskit import execute

#実行と結果取得

backend=Aer.get_backend("qasm_simulator") #バックエンドを測定 job=execute(circuit, backend) #量子プログラムを実行 result=job.result() #結果を取得 **print(result.get_counts(circuit))** #結果をテキスト表示

{'00': 481, '11': 543} 実行結果

⑨赤枠コード追加して実行 → 出現確率を棒グラフ表示

#量子回路の初期化 circuit=QuantumCircuit(2)

#量子回路の組み立て circuit.h(0) #アダマール行列を使用 circuit.cx(0,1) #CNOTを使用 # 測定 circuit.measure_all()

from giskit import execute

#実行と結果取得

backend=Aer.get_backend("qasm_simulator") #バックエンドを測定 job=execute(circuit, backend) #量子プログラムを実行 result=job.result() #結果を取得 print(result.get_counts(circuit)) #結果をテキスト表示

plot distribution(job.result().get counts(circuit))

