母比率推定の前準備

母集団がOと1からなる集団とします。 母集団の平均値 $\mu = \frac{1+0+1+1+0+\cdots\cdots+0+0+1+0}{N} = R \leftarrow$ 母比率

母集団から得た標本があり、n個のうちs個が1, 残りのt個がOとすると

$$s + t = n$$

標本平均 $\bar{x} = \frac{1 \times s + 0 \times t}{n} = \frac{s}{n} = r$ ←標本比率

標本の不偏分散は、

$$\frac{(1-r)^2 + \cdots (1-r)^2 + (0-r)^2 + \cdots (0-r)^2}{n-1} = \frac{s(1-r)^2 + t(0-r)^2}{n-1}$$

$$= \frac{n}{n-1} \times \frac{s(1-r)^2 + t(0-r)^2}{n} = \frac{n}{n-1} \times \left\{ \frac{s}{n} (1-r)^2 + \frac{n-s}{n} r^2 \right\}$$

$$= \frac{n}{n-1} \times \left\{ r(1-r)^2 + (1-r)r^2 \right\}$$

$$= \frac{n}{n-1} r (1-r) = r (1-r) \quad \leftarrow n$$
 大きいとき

標準偏差sは $\sqrt{r(1-r)}$

信頼度95%で母平均μの推定値は

$$\bar{x} - 1.96 \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + 1.96 \frac{s}{\sqrt{n}}$$

前ページの

$$\mu = R$$

 $\bar{x} = r$
 $s = \sqrt{r(1-r)}$ を代入して

信頼度95%で母比率Rの推定値は

$$r - 1.96 \sqrt{\frac{r(1-r)}{n}} \le R \le r + 1.96 \sqrt{\frac{r(1-r)}{n}}$$

標本調査の結果、内閣支持率者は1250人中638人でした。 実際に内閣支持率Rを推定せよ

信頼度95%で母比率Rの推定値は

$$r - 1.96\sqrt{\frac{r(1-r)}{n}} \le R \le r + 1.96\sqrt{\frac{r(1-r)}{n}}$$

$$r = \frac{638}{1250}$$

$$\frac{638}{1250} - 1.96\sqrt{\frac{\frac{638}{1250}\left(1 - \frac{638}{1250}\right)}{n}} \le R \le \frac{638}{1250} + 1.96\sqrt{\frac{\frac{638}{1250}\left(1 - \frac{638}{1250}\right)}{n}}$$

$$0.4826 \dots \le R \le 0.5381 \dots$$

$$48.3\% \le R \le 53.8\%$$

再掲

開票率1%で、なぜ「当確」を出せるか? その理由は? 投票者が10万人いて、1000人分(1%)を開票した時、立候補者Aの得票率が0.6 であるとして説明せよ。

開票数n、その中で立候補者Aの得票率をrとする。真の得票率Rは95%の信頼度では以下の式となる。

$$r-1.96 \times \sqrt{\frac{r(1-r)}{n}} \le R \le r+1.96 \times \sqrt{\frac{r(1-r)}{n}}$$

$$0.6-1.96 \times \sqrt{\frac{0.6(1-0.6)}{1000}} \le R \le 0.6-1.96 \times \sqrt{\frac{0.6(1-0.6)}{1000}}$$

$$0.57 \le R \le 0.63$$

開票率	開票数	推定得票率下限	推定得票率上限								
1%	1,000	0.570	0.630								
2%	2,000	0.579	0.621	0.64	T				111-	V	
5%	5,000	0.586	0.614						——推定	2得票率下限	
10%	10,000	0.590	0.610	0.63	1				推定	2得票率上限	
15%	15,000	0.592	0.608		1					1424-176	
20%	20,000	0.593	0.607	0.62	\top						
25%	25,000	0.594	0.606								
30%	30,000	0.594	0.606	0.61							
35%	35,000	0.595	0.605								
40%	40,000	0.595	0.605	0.60	+						
45%	45,000	0.595	0.605								
50%	50,000	0.596	0.604	0.59							
55%	55,000	0.596	0.604								
60%	60,000	0.596	0.604	0.58	+/						
65%	65,000	0.596	0.604								
70%	70,000	0.596	0.604	0.57	+						
75%	75,000	0.596	0.604								
80%	80,000	0.597	0.603	0.56	+	1	-	1	ı	-	
85%	85,000	0.597	0.603	(0%	20%	40%	60%	80%	100%	120%
90%	90,000	0.597	0.603								
95%	95,000	0.597	0.603								
100%	100,000	0.597	0.603								