ベルヌーイ試行

$$P(X = 1) = p$$

 $P(X = 0) = 1 - p$
期待値 $E[X] = p$
分散 $V[X] = p(1 - p)$

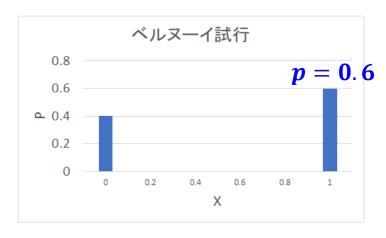
複数回施行

二項分布

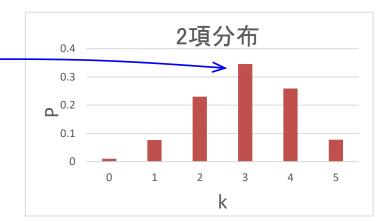
$$P(X) =_{n} C_{k} p^{k} (1-p)^{n-k}$$

期待値 $E[X] = np = 5 \times 0.6 = 3$
分散 $V[X] = np(1-p)$

合格率60%の試験の1回目の合格率



合格率60%の試験5回実施、k回目の合格率



ベータ分布

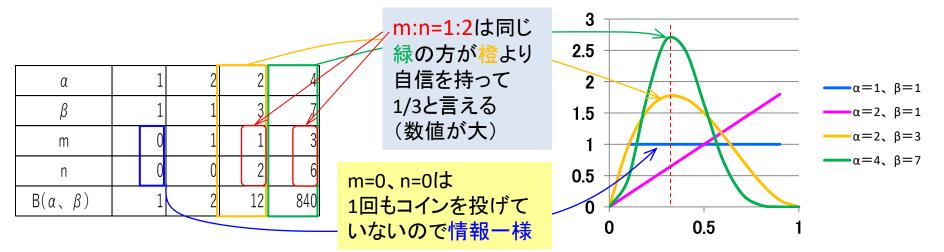
イカサマなコインがあり、表が出る確率がxの時、 表がm回、裏がn回出たとします。 この時に、表が出る確率を予測する際に用います。

ベータ分布の確率密度関数

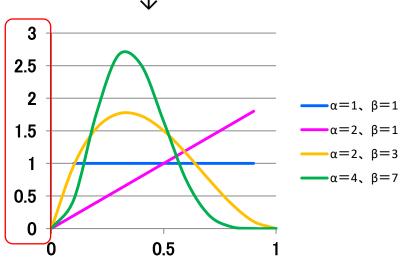
$$f(x) = \frac{x^m (1-x)^n}{\int_0^1 x^m (1-x)^n dx} = \frac{x^{\alpha-1} (1-x)^{\beta-1}}{\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx} = B(\alpha,\beta) x^{\alpha-1} (1-x)^{\beta-1}$$

$$B(\alpha,\beta) = \frac{1}{\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx} = \frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!}$$
 (α及びβが整数の場合)

分子の0~1の累積値で規格化



前ページの式で算出 $B(\alpha,\beta)$ は階乗の式で計算 \mathbb{L}



Excelでは

BETADIST(x,α,β)を用いて累積確率密度 を算出 →確率密度関数を計算

α	2	
β	1	<u> </u>
0	0	=BETADIST(0,2,1)
0.1	0.01	=BETADIST(0.1,2,1) — BETADIST(0,2,1)
0.2	0.03	=BETADIST(0.2,2,1) — BETADIST(0.1,2,1)
0.3	0.05	=BETADIST(0.3,2,1) — BETADIST(0.2,2,1)

