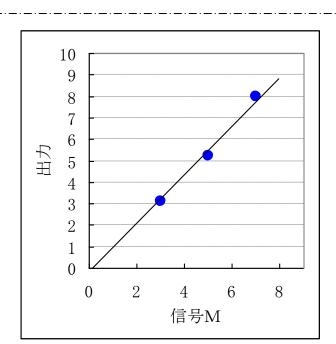
動特性について

(入出力の関係をもつ特性)

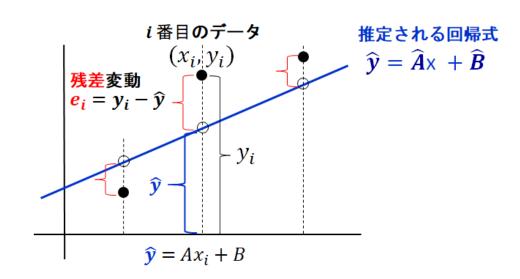

信号	M ₁	M_2	M_3
出力	У ₁	У2	y ₃

のときに直線の勾配βを算出する

例題 下表の勾配βを算出する

信号	3	5	7
出力yi	3.1	5.2	8.0

勾配
$$\beta = \frac{3\times3.1+5\times5.2+7\times8.0}{3^2+5^2+7^2} = \frac{91.3}{83} = 1.1$$



再掲

最小二乗法を用いて、回帰式を求めます

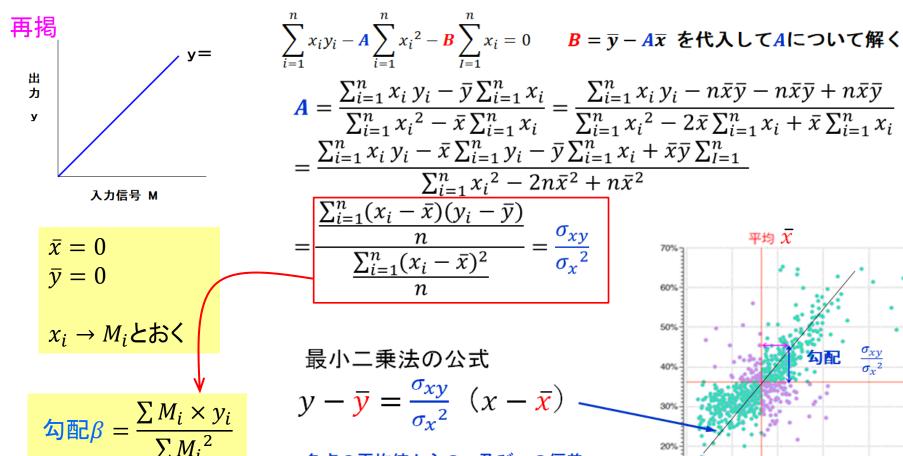
最小二乗法とは、

残差の平方和 $\sum_{i=1}^n \{y_i - (Ax_i + B)\}^2$ が最小となる回帰式の $A \ge B$ を求める手法

再掲

残差の平方和S
$$S = \sum_{i=1}^{n} \{y_i - (Ax_i + B)\}^2$$
 が最小となるのは
$$S = \sum_{i=1}^{n} \{y_i - (Ax_i + B)\}^2 = \sum_{i=1}^{n} \{y_i^2 - 2y_i(Ax_i + B) + (Ax_i + B)^2\}$$

$$= \sum_{i=1}^{n} \{y_i^2 - 2Ax_iy_i - 2By_i + A^2x_i^2 + 2ABx_i + B^2\}$$


$$S = A^2 \sum_{i=1}^{n} x_i^2 + nB^2 + \sum_{i=1}^{n} y_i^2 - 2A \sum_{i=1}^{n} x_iy_i - 2B \sum_{i=1}^{n} y_i + 2AB \sum_{i=1}^{n} x_i$$

$$\frac{\partial S}{\partial A} = 2\mathbf{A} \sum_{i=1}^{n} x_i^2 - 2\sum_{i=1}^{n} x_i y_i + 2\mathbf{B} \sum_{I=1}^{n} x_i = 0$$

$$\frac{\partial S}{\partial B} = 2n\mathbf{B} - 2\sum_{i=1}^{n} y_i + 2\mathbf{A} \sum_{i=1}^{n} x_i = 0$$

$$\sum_{i=1}^{n} y_i - n\mathbf{B} - \mathbf{A} \sum_{i=1}^{n} x_i = 0$$

$$\mathbf{B} = \frac{1}{n} \sum_{i=1}^{n} y_{i} - \frac{\mathbf{A}}{n} \sum_{i=1}^{n} x_{i} = \frac{n\overline{\mathbf{y}}}{n} - \frac{n\mathbf{A}\overline{\mathbf{x}}}{n} = \overline{\mathbf{y}} - \mathbf{A}\overline{\mathbf{x}}$$

各点の平均値からの x 及び y の偏差 の掛算(共分散)を x のばらつき (分散)で割ったもの

勾配 $\beta = 1.1$ を用いて、出力 βM_i 及び誤差 $y_i - \beta M_i$ を算出する

信号M _i	3	5	7	$3^2+5^2+7^2=83$
出力y _i	3.1	5.2	8.0	$3.1^2 + 5.2^2 + 8.0^2 = 100.65$
出力 <i>β M_i</i>	3.3	5.5	7.7	$3.3^2 + 5.5^2 + 7.7^2 = 100.43$
$y_i - \beta M_i$	-0.2	-0.3	0.3	$(-0.2)^2 + (-0.3)^2 + (0.3)^2 = 0.22$

$$y_i^2 = (\beta M_i)^2 + (y_i - \beta M_i)^2$$
が成り立っている 100.65= 100.43 + 0.22 $y = \beta M$ 全出力 = 信号のエネルキー + ノイス・のエネルキー βM_i βM_i

付録 式の導出

 M_i :入力信号 y_i :出力信号 β :定数

言号
$$y_i$$
:出力信号 eta :定数

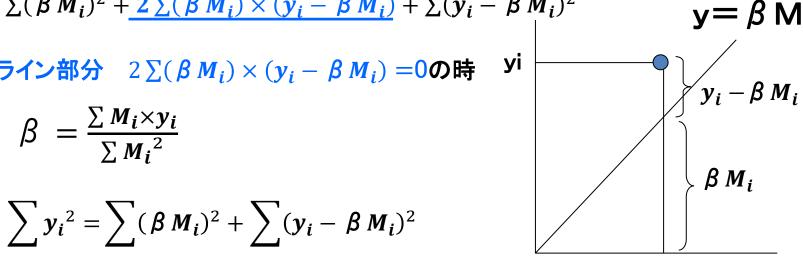
$$m{y}_i$$
: 人刀信号 $m{y}_i$: 出刀信号 $m{eta}$: 定剱 $m{y}_i$. $m{eta}$. $m{eta}$. $m{eta}$. $m{eta}$.

$$y_i = \beta M_i = \beta M_i + (y_i - \beta M_i)$$

両辺2乗して

$$\sum y_i^2 = \sum \{\beta M_i + (y_i - \beta M_i)\}^2$$

$$i^{2} = \sum \{\beta M_{i} + (y_{i} - \beta M_{i})\}^{2}$$


$$\begin{aligned} \mathbf{a}^{-1} &= \sum \{\beta M_i + (y_i - \beta M_i)\}^2 \\ &= \sum (\beta M_i)^2 + 2\sum (\beta M_i) \times (y_i - \beta M_i)^2 + 2\sum (\beta M_i) \times (y_i - \beta M_i)^2 + 2\sum (\beta M_i)^2 \times (y_i - \beta M_i)^2 \times (y_i - \beta$$

$$= \sum (\beta M_i)^2 + 2\sum (\beta M_i) \times (y_i - y_i)$$

$$\beta = \frac{\sum M_i \times y_i}{\sum M_i^2}$$

$$\sum M_i^2$$

$$= \sum (\beta M_i)^2 + 2\sum (\beta M_i) \times (y_i - \beta M_i) + \sum (y_i - \beta M_i)^2$$
アンダーライン部分 $2\sum (\beta M_i) \times (y_i - \beta M_i) = 0$ の時 y^i

 M_{i}

SN比 η の公式

$$\eta = \frac{\text{Signa}l}{\text{Noise}} = \frac{\beta^2}{\sigma^2}$$

品質工学では、以下の式を使いますので、この形を覚えて下さい

dBではない

 S_{β} : 信号の変動 V_e : 誤差の分散 n: 反復数

r: 入力の大きさ

前述の例題のSN比ηを算出すると

$$S_T = y_1^2 + y_2^2 + y_3^2 = 100.65$$

$$S_{\mathcal{S}} = 信号の変動$$

$$= (\beta M_1)^2 + (\beta M_2)^2 + (\beta M_3)^2 = \beta^2 (M_1^2 + M_2^2 + M_3^2) = 100.43$$

$$V_e = \frac{\mathbf{BE}\mathbf{S}\mathbf{M}}{\mathbf{b}\mathbf{B}\mathbf{E}} = \frac{S_e}{f_e} = \frac{S_T - S_\beta}{f_e} = \frac{100.65 - 100.43}{3 - 1} = \frac{0.22}{2} = \mathbf{0.11}$$

$$r = M_1^2 + M_2^2 + M_3^2 = 83$$

$$\eta = 10 log \frac{\frac{1}{nr}(S_{\beta} - V_e)}{V_o}$$
に代入

分散分	介析表 [こまとめるとわかり	リ易い / f
Source) f	S	V /
β	1	$S_{\beta} = 100.43$	
е	2	S _e =0.22	V _e =0.11
Т	3	S _T =100.65	

$$\eta = 10log^{\frac{1}{83}(100.43 - 0.11)} = 10log 10.99 = 10.4 \ db$$

K=3、N=1でのSN比 η の算出式

信号	M ₁	M ₂	M ₃
出力	У ₁	У2	y 3

$$\eta = 10log \frac{\frac{1}{r}(S_{\beta} - V_e)}{V_e}$$

K=k N=nでのSNHnの質出式

八 八八八 川でののけばりの井田が					
信号	M ₁	M ₂	M ₃		M _k
出力1	y ₁₁	У ₂₁	y ₃₁		y _{k1}
:	:	:	:	:	:
n	y _{1n}	y _{2n}	y _{3n}	:	y _{kn}
合計	У1	У2	у ₃		y _k

Source	f	S	V
β	1	SB	Vβ
е	nk-1	$S_{\mathbf{e}}$	V _e
Т	nk	S_{T}	

$$S_{T} = y_{11}^{2} + y_{12}^{2} + \dots + y_{kn}^{2} \qquad (f = nk)$$

$$S_{\beta} = \frac{L^{2}}{nr} = \frac{(M_{1}y_{1} + M_{2}y_{2} + \dots + M_{k}y_{k})^{2}}{n(M_{1}^{2} + M_{2}^{2} + \dots + M_{k}^{2})} \qquad (f = 1)$$

$$S_{e} = S_{T} - S_{\beta} \qquad (f = nk)$$

$$\stackrel{\checkmark}{\longrightarrow}$$

$$(f = nk - 1)$$

$$\uparrow \eta = 10log \frac{\frac{1}{nr}(S_{\beta} - V_{e})}{V_{e}}$$