- 8 plot raw data
 - 1) look at the graph of L1 to L18
 - 2) What is your ideal?
 - 3) slect a few that are close to your ideal Select 2-3 items far from ideal

Signal factor: die size

- 4) Is the SN ratio that is close to the ideal graph more larger? Is the SN ratio of graph which is far from ideal more smaller? →If not, review the SN ratio calculation formula.
- 5) If they match, create a graph of factorial effects

8 Raw data plotting

1) Plot the results of the orthogonal table experiment on the graph from L1 to L18

- 2) Calculate the SN ratio η and the sensitivity S from the data using the SN ratio formula
- 3) Select a graph that you think has good characteristics and confirm that it matches the calculated SN ratio. Select a graph that you think has poor characteristics and confirm that it matches the calculated SN ratio.

example large SN ratio : L11 L18 L2 small SN ratio : L1 L9 L10 straight line with high sensitivity : L11 those with low sensitivity : L2

There are some pattern that priority may be given to SN ratio with sacrificing sensitivity or priority may be given to sensitivity with sacrificing SN ratio.

Calculate the SN ratio for each level of A~H control factor

	control factor								SN ratio
· No	Α	В	С	D	Ε	F	G	Н	(db)
1	1	1	1	1	1	1	1	1	34.73
2	1	1	2	2	2	2	2	2	55.31
3	1	1	3	З	3	3	з	3	55.87
4	1	2	1	1	2	2	з	3	57.65
5	1	2	2	2	3	3	1	1	55.58
6	1	2	3	З	1	1	2	2	48.93
7	1	3	1	2	1	3	2	3	55.49
8	1	3	2	З	2	1	з	1	50.42
9	1	3	3	1	3	2	1	2	38.61
10	2	1	1	З	3	2	2	1	49.05
11	2	1	2	1	1	3	З	2	51.08
12	2	1	3	2	2	1	1	3	51.69
13	2	2	1	2	3	1	Э	2	48.21
14	2	2	2	з	1	2	1	3	55.31
15	2	2	3	1	2	3	2	1	57.57
16	2	3	1	3	2	3	1	2	53.10
17	2	3	2	1	3	1	2	3	53.06
18	2	3	3	2	1	2	3	1	52.82

Check that everything is the same

select optimum condition and worst condition

1) Is the average value correct?

- 2) Mark () (high levels of SN ratio) and () (low levels of SN ratio)
- 3) optimum condition \rightarrow A1B3C1D3····· worst condition \rightarrow A2B2C3D2·····

10 calculate the estimated gain


```
gain=(optimum condition sum of deviation from mean)
- (worst condition sum of deviation from mean)
= ( \triangle A +  \triangle B +  \triangle C +  \triangle D + \cdot \cdot +  \triangle H)
- ( \triangle A +  \triangle B +  \triangle C +  \triangle D + \cdot \cdot +  \triangle H)
```

10 confirming experiment

make sample under optimum condition and worst condition calculate SN ratio calculate the confirmed gain