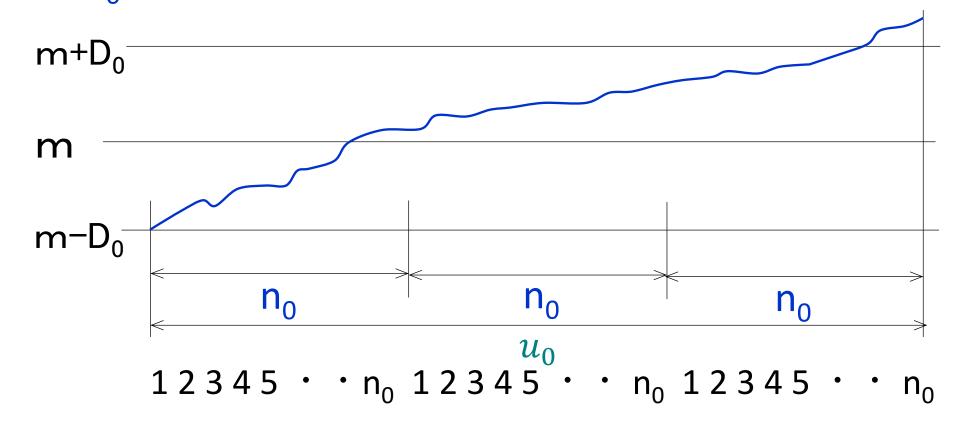
損失
$$L_0 = \frac{B}{n_0} + \frac{C}{u_0} + \frac{A}{\Delta^2} \left[ \frac{{D_0}^2}{3} + \left( \frac{n_0+1}{2} + \ell \right) \frac{{D_0}^2}{u_0} \right] = 33.1$$
円/セット



## 最適条件

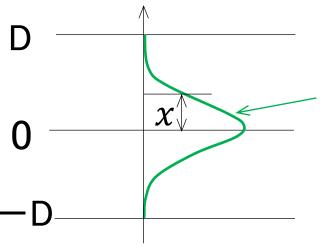
|           | 現行条件  |       |         | 改善後条件         |           |          |                                                                            |
|-----------|-------|-------|---------|---------------|-----------|----------|----------------------------------------------------------------------------|
| 寸法許容差     | Δ     | μm    | 30      |               |           |          | $2u_0B$ $\Delta$                                                           |
| 不良品損失     | Α     | 円/セット | 190     |               |           |          | $n = \left  \frac{2u_0B}{2} \cdot \frac{\Delta}{2} \right $                |
| 検査費       | В     | 円     | 1, 200  |               |           |          | $A D_0$                                                                    |
| 検査と判定に時間差 | l     | セット   | 50      |               |           |          | $\sqrt{n}$ $D_0$                                                           |
| 調整費       | С     | 円     | 5, 800  |               |           |          |                                                                            |
| 現行検査間隔    | $n_0$ | セット   | 300     | $\rightarrow$ | 842. 9    | n Z      | $\begin{pmatrix} 2c & p & 2 & \sqrt{4} \end{pmatrix}$                      |
| 現行調整限界    | $D_0$ | μm    | 20      | $\rightarrow$ | 6. 0      | D 🗲      | $\sqrt{3C}$ $D_0^2$ $\sqrt{3C}$                                            |
| 平均調整間隔    | $u_0$ | セット   | 25, 000 | $\rightarrow$ | 2, 269. 7 | u        | $D = \left(\frac{3C}{A} \times \frac{D_0^2}{u_0} \times \Delta^2\right)^4$ |
|           |       |       |         |               |           | <b>,</b> | $\begin{pmatrix} A & u_0 \end{pmatrix}$                                    |
|           |       |       |         |               |           |          |                                                                            |
|           |       |       |         |               | 1         |          | $D^2$                                                                      |
|           |       |       |         |               | ▼         |          | $u = u_0 \times \frac{D}{D_0^2}$                                           |
|           |       |       |         |               |           |          | $D_0^2$                                                                    |

損失
$$L = \frac{B}{n} + \frac{C}{u} + \frac{A}{\Delta^2} \left[ \frac{D^2}{3} + \left( \frac{n+1}{2} + \ell \right) \frac{D^2}{u} \right] = 8.1$$
円/セット


$$L_0 - L = 33.1 - 8.1 = 25$$
円/セット

年間稼働時間1600時間とすると、

25円/セット×300セット/時間×1600時間=1200万円の改善効果が期待できる

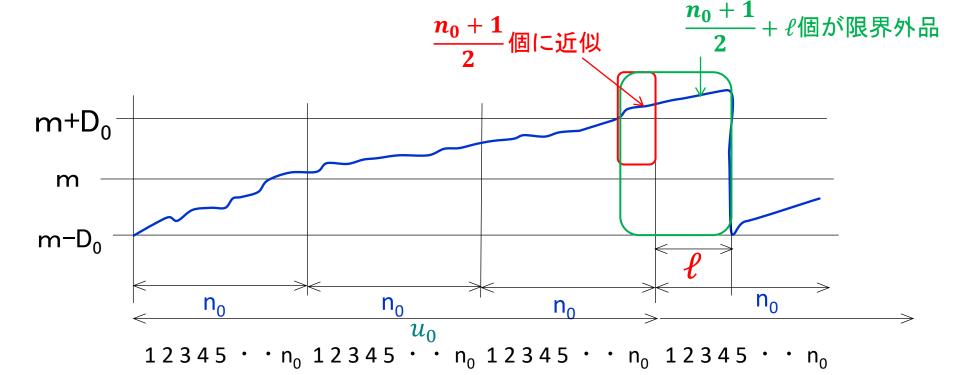

## 前回資料

中心値m、管理幅 $\pm D_0$ で管理している工程 製品 $\mathbf{n}_0$ 個毎に検査を実施、平均調整間隔 $u_0$ 毎に設備調整

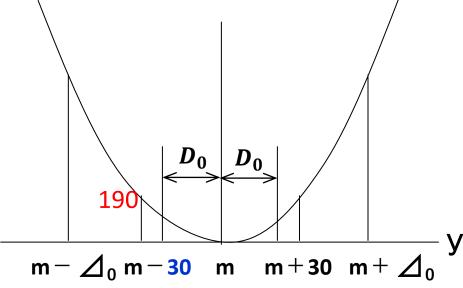


1回の検査費用をB、調整費用がCであるとすると

管理コスト= 
$$\frac{B}{n_0} + \frac{C}{u_0}$$




調整限界を±Dで管理している 場合の分布


## この分布の分散は



分散
$$V = \frac{1}{2D} \int_{-D}^{D} (x - 0)^2 dx = = \frac{1}{2D} \int_{-D}^{D} x^2 dx = \frac{D^2}{3}$$



|           |       | 現行条件  |         |  |  |  |
|-----------|-------|-------|---------|--|--|--|
| 寸法許容差     | Δ     | μ m   | 30      |  |  |  |
| 不良品損失     | Α     | 円/セット | 190     |  |  |  |
| 検査コスト     | В     | 円     | 1, 200  |  |  |  |
| 検査と判定に時間差 | Q     | セット   | 50      |  |  |  |
| 調整コスト     | С     | 円     | 5, 800  |  |  |  |
| 現行検査間隔    | $n_0$ | セット   | 300     |  |  |  |
| 現行調整限界    | $D_0$ | μm    | 20      |  |  |  |
| 平均調整間隔    | $u_0$ | セット   | 19, 560 |  |  |  |



管理コスト=
$$\frac{B}{n_0} + \frac{C}{u_0}$$
寸法の分散= $\frac{D_0^2}{3}$ 

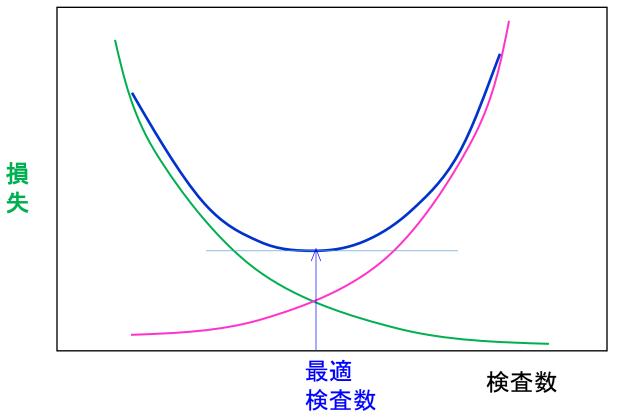
133.3

4.2円

$$rac{n_0+1}{2}$$
 +  $\ell$ 個が限界外品

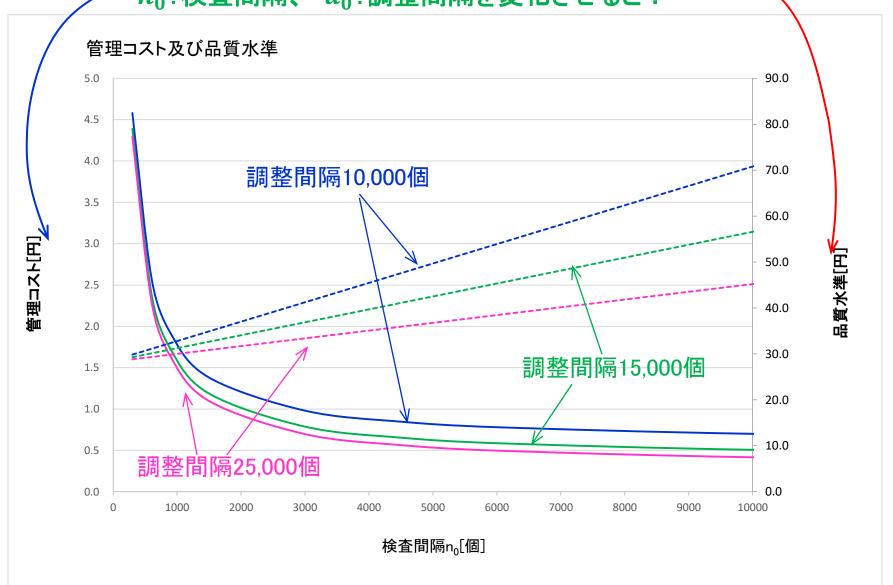
限界外の分散 = 
$$\left(\frac{n_0+1}{2}+\ell\right)$$
  $\frac{D_0^2}{u_0}$ 

損失係数 $k = \frac{A}{\Lambda^2}$ 


0.21

`uo当たりの分散

損失
$$L_0 = \frac{B}{n_0} + \frac{C}{u_0} + \frac{A}{\Delta^2} \left[ \frac{D_0^2}{3} + \left( \frac{n_0 + 1}{2} + \ell \right) \frac{D_0^2}{u_0} \right]$$

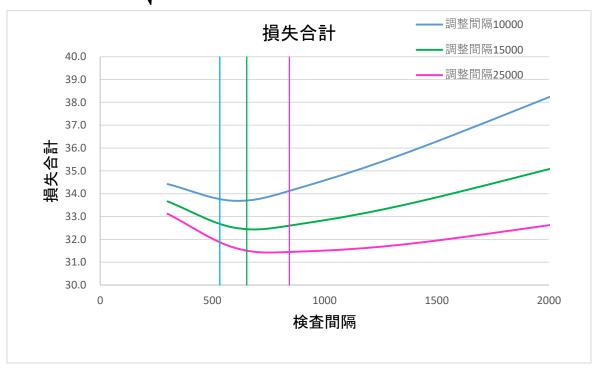

33.1円





損失
$$L_0 = \frac{B}{n_0} + \frac{C}{u_0} + \frac{A}{\Delta^2} \left[ \frac{D_0^2}{3} + \left( \frac{n_0 + 1}{2} + \ell \right) \frac{D_0^2}{u_0} \right]$$

 $n_0$ :検査間隔、 $u_0$ :調整間隔を変化させると?




損失
$$L_0 = \frac{B}{n_0} + \frac{C}{u_0} + \frac{A}{\Delta^2} \left[ \frac{D_0^2}{3} + \left( \frac{n_0 + 1}{2} + \ell \right) \frac{D_0^2}{u_0} \right]$$

 $L_0$ が最小になる $n_0$ を求めるには、 $L_0$ を $n_0$ で微分したものが0として解く

$$\frac{dL_0}{dn_0} = -\frac{B}{n_0^2} + \frac{C}{u_0} + \frac{A}{\Delta^2} \cdot \frac{D_0^2}{2u_0} = \mathbf{0}$$

$$n_0 = \sqrt{\frac{2u_0B}{A} \cdot \frac{\Delta}{D_0}}$$

