
③システム分割を設定します ←× 成形工程のみ

[起き得る不具合]

- ・受け入れた原料の「MFR(Melt Flow Rate)」が異なる
 →同じ成形条件でも成形物の状態が変化 → 同じ溶着条件で品質が変化
- 溶着後の熱処理や長時間保存後に接着部のクラックが生じる

システム分割は可能な限り広い範囲に

③システム分割を設定します → プロセス機能展開表作成

直交表1回目 2回目

プロセス機能								
工程	システム分割	項目	L18-1		L18-2			
原料								
成形	適用	基本機能、評価法 入力 出力 要求特性 制御因子 シリンダ温度(°C) 射出速度(sec) VP切替位置(mm) 保圧圧力(kgf)	金型寸法 成形品寸〉 成形寸法: 水準1 175 15 6	去 =金型寸 水準2 200 20 6.25 13				
		保圧時間(sec) 冷却時間(sec) 背圧(kgf) スクリュー回転数(%)	1.5 20 5 20 N1	2 25 10 25 樹脂: M	2.5 30 15 30			
		推定確認試験	N2 最適 最悪 推定利得 最適 最悪 利得	樹脂: M				
溶着	適用	基本機能、評価法 入力 出力 制御因子 誤差因子 推定 確認試験	水準1	水準2	水準3	水準1	水準2	水準3
熱処理	適用	基本機能、評価法 入力 出力 制御因子 誤差因子 推定 確認試験	水準1	水準2	水準3	水準1	水準2	水準3
輸送、保管 顧客		THE DIG BY 197						

システム分割

イ 検討する工程

④制御因子及び水準を設定

制御因子: 我々がコントロール可能な因子

水準 : 可能な限り広く

Q. 制御因子を挙げよ

例

		水準					
	制御因子	1	2	3			
А	シリンダ温度(℃)	175	200	1			
В	射出速度(sec)	15	20	25			
С	VP切替位置(mm)	6	6.25	6.5			
D	保圧圧力(kgf)	10	13	1 5			
E	保圧時間(sec)	1.5	2	2.5			
F	冷却時間(sec)	20	25	30			
G	背圧(kgf)	5	10	1 5			
Н	スクリュー回転数(%)	20	25	30			

⑤誤差因子の設定

重要!!

誤差因子 •使用環境

*劣化

など制御不可な因子

N1は通常状態あるいは特性が大きくなる誤差因子 N2は特性が小さくなる誤差因子 を選定する

Q. 誤差因子は何?

N1: MFR小、輸送時の温度など

N2: MFR大、滅菌での収縮、輸送時の温度など

今回はMFRの異なる2種類の樹脂を誤差因子とする

N1: PMA

N2: PMB