カーブフィッティングの方法

EXCELの近似式で十分ですか?

Excel ①データにカーソルを合わせ右クリック ②「近似曲線の追加」をクリックすると「近似曲線の書式設定」画面が表示 ③「多項式近似」を選択し、次数を変えてフィットするものを探す ④「グラフに数式を表示する」を選択

連立方程式を解いて係数を算出

 $(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$ N+1個のデータがあれば次式の連立方程式により 係数を求めることができる

3

 $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_N x^N$ (1)

$$\begin{pmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{N} \end{pmatrix} = \begin{pmatrix} 1 & x_{0}^{1} & x_{0}^{2} & \vdots & x_{0}^{N} \\ 1 & x_{1}^{1} & x_{1}^{2} & \vdots & x_{1}^{N} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & x_{1}^{1} & x_{1}^{2} & \vdots & x_{N}^{N} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ \vdots \\ a_{N} \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & x_{0}^{1} & x_{0}^{2} & \vdots & x_{0}^{N} \\ 1 & x_{1}^{1} & x_{1}^{2} & \vdots & x_{1}^{N} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N}^{1} & x_{N}^{2} & \vdots & x_{N}^{N} \end{pmatrix} \succeq \Rightarrow z$$

代入した値以外の補間部分では 外れる値が多い

連立方程式

Excel操作

逆行列の作成法

	×	У
0	0	1.3
1	1.5	1.5
2	3	1.85
3	4.5	2.5
- 4	6	2.5
5	7.5	2.5
6	9	2
7	10.5	1.5
8	12	2
9	13.5	1.5
10	15	1.5
11	16.5	1.5
12	18	2
13	19.5	2.5
14	21	2
15	22.5	1.5

逆行列

0	a1	a2	a3	a4	а5
1	0	0	0	0	
1	1.5	2.25	3.3750	5.0625	7.5
1	3	9	27	81	
1	4.5	20	91	410	1
1	6	36	216	1296	7
1	7.5	56	422	3164	- 23
1	9	81	729	6561	59
1	10.5	110	1158	12155	127
1	12	144	1728	20736	248
1	13.5	182	2460	33215	448
1	15	225	3375	50625	759
1	16.5	272	4492	74120	1222
1	18	324	5832	104976	1889
1	19.5	380	7415	144590	2819
1	21	441	9261	194481	4084
1	22.5	506	11391	256289	5766

④ ShiftとCtrlを同時に押しながらEnter

分母は定数

分子はN乗の式で前ページの式(1)と同じ 求めたいx値の値を代入してy値が得られる

$$y = \frac{(x - x_1)(x - x_2)(x - x_3)\cdots(x - x_N)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)\cdots(x_0 - x_N)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)\cdots(x - x_N)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_2)\cdots(x_1 - x_N)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)\cdots(x - x_N)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)\cdots(x_2 - x_N)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)\cdots(x - x_N)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)\cdots(x_3 - x_N)} y_3 + \frac{(x - x_0)(x - x_1)(x - x_2)\cdots(x - x_N)}{(x_k - x_0)(x_k - x_1)(x_k - x_3)\cdots(x_k - x_N)} y_k + \cdots$$

$$+ \frac{(x - x_0)(x - x_1)(x - x_2)\cdots(x - x_{N-1})}{(x_N - x_2)(x_N - x_1)(x_N - x_2)\cdots(x_N - x_{N-1})} y_N \quad \cdots (2)$$

ラグランジュ補間

連立方程式と同じ値となる

ラグラ	ランジュの)補間法			
	関数表	見点数	16	補間点数	31
	補間す	る関数表		補間結果	
		×	У	×	f(x)
	0	0	1.3	0	1.30
	1	1.5	1.5	1	-17.6
	2	3	1.85	1.5	1.50
	3	4.5	2.5	2	6.07
	4	6	2.5	3	1.85
	5	7.5	2.5	4	1.80
	6	9	2	4.5	2.50
	7	10.5	1.5	5	2.81
	8	12	2	6	2.50
	9	13.5	1.5	7	2.42
	10	15	1.5	7.5	2.50
	11	16.5	1.5	8	2.49
	12	18	2	9	2.00
	13	19.5	2.5	10	1.50
	14	21	2	10.5	1.50
	15	22.5	1.5	11	1.66
				12	2.00
				13	1.75
				13.5	1.50
				14	1.34
				15	1.50
				16	1.69
				16.5	1.5
				17	1.27
				18	2
				19	3.71
				19.5	2.5
				20	-1.02
				21	2
				22	59.57
				22.5	1.5

Excelのマクロ

Sub Macro1() '' Macro1 Macro

Dim x() As Double Dim y() As Double Dim no As Integer '補間する関数表の点数 no = Cells(3, 4)ReDim x(no) As Double '補間する関数表のx値 ReDim y(no) As Double '補間する関数表のy値 For i = 0 To no - 1 x(i) = Cells(7 + i, 3)y(i) = Cells(7 + i, 4)Next noh = Cells(3, 7) '補間点数 Dim xx As Double '補間するx値 Dim yy As Double '補間するy値 Dim Lk As Double 'Lk(x) For i = 0 To noh - 1 xx = Cells(7 + i, 6)yy = 0#For k = 0 To no - 1 Lk = 1# For j = 0 To no - 1 If k <> j Then Lk = Lk * (xx - x(j)) / (x(k) - x(j))Next yy = yy + Lk * y(k)Next Cells(7 + i, 7) = yyNext End Sub

スプライン補間法

$$\begin{split} S_{0}(x) &= a_{0} + b_{0}(x - x_{0}) + c_{0}(x - x_{0})^{2} + d_{0}(x - x_{0})^{3} \cdots (1) \\ S_{1}(x) &= a_{1} + b_{1}(x - x_{1}) + c_{1}(x - x_{1})^{2} + d_{1}(x - x_{1})^{3} \\ S_{0}(x_{0}) &= a_{0} = f(x_{0}) \\ S_{1}(x_{1}) &= a_{1} = a_{0} + b_{0}(x_{1} - x_{0}) + c_{0}(x_{1} - x_{0})^{2} + d_{0}(x_{1} - x_{0})^{3} \\ h_{0} &= x_{1} - x_{0}, \qquad a_{n} = f(x_{n}) \\ a_{1} &= a_{0} + b_{0}b_{0} + c_{0}b_{0}^{2} + d_{0}b_{0}^{3} \\ \vec{x}(1) &\geq \vec{W} \noti \cup \nabla b_{n} = S'(x_{n}) \geq \vec{x} \leq \boldsymbol{\Sigma} \\ S'_{0}(x) &= b_{0} + 2c_{0}(x - x_{0}) + 3d_{0}(x - x_{0})^{2} \\ S'_{0}(x_{1}) &= b_{0} + 2c_{0}(x_{1} - x_{0}) + 3d_{0}(x_{1} - x_{0})^{2} \\ &= b_{0} + 2c_{0}b_{0} + 3d_{0}b_{0}^{2} \\ S'_{1}(x_{1}) &= b_{1} = b_{0} + 2c_{0}b_{0} + 3d_{0}b_{0}^{2} \\ S''_{1}(x_{1}) &= b_{1} = b_{0} + 2c_{0}b_{0} + 3d_{0}b_{0}^{2} \\ S''_{1}(x_{1}) &= 2c_{0} + 6d_{0}b_{0} \\ S''_{1}(x_{1}) &= 2C_{1} \\ c_{1} &= c_{0} + 3d_{0}b_{0} \\ d_{0} &= \frac{c_{1} - c_{0}}{3b_{0}} \\ a_{1} &= a_{0} + b_{0}b_{0} + c_{0}b_{0}^{2} + \frac{b_{0}^{2}}{3}(2c_{0} + c_{1}) \\ b_{1} &= b_{0} + h_{0}(c_{0} + c_{1}) \\ b_{0} &= \frac{1}{b_{0}}(a_{1} - a_{0}) - \frac{h_{0}}{3}(2c_{0} + c_{1}) \\ \frac{3}{h_{j}}(a_{j+1} - a_{j}) - \frac{3}{h_{j-1}}(a_{j} - a_{j-1}) = h_{j-1}c_{j-1} + 2(h_{j} + h_{j-1})c_{j} + h_{j}c_{j+1} \\ \vec{y} \mathcal{R} \mathcal{R} \not(t_{0} = 0, \qquad c_{n} = 0 \end{split}$$

どんな複雑な波もシンプルな波の足し算である

シンプルな波 $y(t) = A \sin \omega t$

複雑な波

オイラーの公式 $\cos t + i \sin t = e^{it}$ sin波だけでなく $\cos 波 + i \sin t = e^{it}$ $y(t) = \int A(\omega)e^{i\omega t} d\omega$

虚数i は、我々の目に見えない「仏の世界」
 愛i が世界に平和をもたらす

xを時間軸、yを振幅とした波とする

У

×

0

周波数flc対して振幅をプロットした パワースペクトルとする

パワースペクトル

おまけ

連続した曲線であれば三角関数で全て表せるか? 例えば矩形波は? 三角は?

連続した曲線f(x)は、以下の式で表せます

$$f(x) = \sum_{0}^{n} a_{n} \cos x + b_{n} \sin x$$

上記の係数a_nとb_nをフーリエ変換で求めればよい

以下参照

矩形波をフーリエ変換してsinとcos波で表すと

$$\begin{array}{rcl} -1 & -\pi < x \le 0 \\ 1 & 0 < x \le \pi \end{array} \\ \begin{array}{rcl} -1 & (2n-1)\pi < x \le 2n\pi \\ 1 & 2n\pi < x \le (2n+1)\pi \end{array} \\ a_n & = & \frac{1}{\pi} < f(x), \cos(nx) > \\ & = & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos(nx) \, dx \\ a_n & = & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos(nx) \, dx \\ a_n & = & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos(nx) \, dx \\ & = & \frac{1}{\pi} \int_{-\pi}^{0} -1 \cdot \cos(nx) \, dx + \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot \cos(nx) \, dx \end{array}$$

$$a_0 = \frac{1}{\pi} < f(x), 1 >$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

=

 a_0

$$= \frac{1}{\pi} \int_{-\pi}^{0} -1 \, dx + \frac{1}{\pi} \int_{0}^{\pi} 1 \, dx$$
$$= -\frac{1}{\pi} [x]_{-\pi}^{0} + \frac{1}{\pi} [x]_{0}^{\pi}$$

$$= -\frac{1}{\pi} \cdot \pi + \frac{1}{\pi} \cdot \pi$$

s(nx) dx $\frac{1}{\pi}\int_{-\pi}^{-1} \cos(nx) dx + \frac{1}{\pi}\int_{0}^{1}$ $= -\frac{1}{\pi} \left[\frac{1}{n} \sin(nx) \right]_{-\pi}^{0} + \frac{1}{\pi} \left[\frac{1}{n} \sin(nx) \right]_{0}^{\pi}$ $= -\frac{1}{\pi} \cdot 0 + \frac{1}{\pi} \cdot 0$

0 =

 a_n

0 =

$$b_{n} = \frac{1}{\pi} < f(x), \sin(nx) > b_{n} = \frac{4}{(2n-1)\pi}$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin(nx) dx$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin(nx) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} -1 \cdot \sin(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} 1 \cdot \sin(nx) dx$$

$$= -\frac{1}{\pi} \left[-\frac{1}{n}\cos(nx) \right]_{-\pi}^{0} + \frac{1}{\pi} \left[-\frac{1}{n}\cos(nx) \right]_{0}^{\pi}$$

$$= \frac{1}{n\pi} [1 - \cos(-n\pi)] - \frac{1}{n\pi} [\cos(n\pi) - 1]$$

$$= \frac{2}{n\pi} - \frac{2}{n\pi} \cos(n\pi)$$

$$b_{n} = \frac{2}{n\pi} - \frac{2}{n\pi} \cos(n\pi)$$

$$= \frac{2}{n\pi} \cdot (1 - (-1)^{n})$$

$$= \begin{cases} \frac{4}{n\pi} & n = 2m - 1 \\ 0 & n = 2m \end{cases}$$

$$f(x) = \sum_{n=1}^{\infty} b_{n} \sin(nx)$$

$$= \sum_{n=1}^{\infty} \frac{4}{\pi} \cdot \frac{1}{2n-1} \sin\left\{(2n-1)x\right\}$$

矩形波を三角関数で表すと

$$f(x) = \sum_{n=1}^{\infty} b_n \sin(nx)$$

= $\sum_{n=1}^{\infty} \frac{4}{\pi} \cdot \frac{1}{2n-1} \sin\{(2n-1)x\}$
= $\frac{4}{\pi} \left\{ \sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \frac{1}{7}\sin(7x) + \cdots \right\}$

EXCELで以下の個数まで算出

f(x	;) =	$\frac{4}{\pi} \left\{ s \right\}$	$in(x) + \frac{1}{3}$	$\sin(3x) +$	$\frac{1}{5}\sin(5x)$	$+\frac{1}{7}\sin(7x)$	$+\frac{1}{9}\sin(9x)$	()}
			1	3	5	7	91	合計
-2 π		-2	3.1E-16	3.1E-16	3.12E-16	3.12E-16	3.12E-16	1.56E-15
		-1.8	0.74839	0.40364	-2.8E-16	-0.17299	-0.08315	0.8958888
		-1.6	1.21092	-0.2495	2.5E-16	0.106913	-0.13455	0.933825
		-1.4	1.21092	-0.2495	-2.2E-16	0.106913	-0.13455	0.933825
		-1.2	0.74839	0.40364	1.87E-16	-0.17299	-0.08315	0.8958888
-π		-1	-2E-16	-2E-16	-1.6E-16	-1.6E-16	-1.6E-16	-7.8E-16
		-0.8	-0.7484	-0.4036	1.25E-16	0.172989	0.083155	-0.895889
		-0.6	-1.2109	0.24946	-9.4E-17	-0.10691	0.134547	-0.933825
		-0.4	-1.2109	0.24946	6.24E-17	-0.10691	0.134547	-0.933825
		-0.2	-0.7484	-0.4036	-3.1E-17	0.172989	0.083155	-0.895889
	0	0	0	0	0	0	0	0
		0.2	0.74839	0.40364	3.12E-17	-0.17299	-0.08315	0.8958888
		0.4	1.21092	-0.2495	-6.2E-17	0.106913	-0.13455	0.933825
		0.6	1.21092	-0.2495	9.36E-17	0.106913	-0.13455	0.933825
		0.8	0.74839	0.40364	-1.2E-16	-0.17299	-0.08315	0.8958888
π		1	1.6E-16	1.6E-16	1.56E-16	1.56E-16	1.56E-16	7.8E-16
		1.2	-0.7484	-0.4036	-1.9E-16	0.172989	0.083155	-0.895889
		1.4	-1.2109	0.24946	2.18E-16	-0.10691	0.134547	-0.933825
		1.6	-1.2109	0.24946	-2.5E-16	-0.10691	0.134547	-0.933825
		1.8	-0.7484	-0.4036	2.81E-16	0.172989	0.083155	-0.895889
2π		2	-3E-16	-3E-16	-3.1E-16	-3.1E-16	-3.1E-16	-1.56E-15

計算の個数を増すと矩形波に近づく

三角波をフーリエ変換してsinとcos波で表すと

$$f(x) = \sum_{n=1}^{\infty} b_n \sin(nx)$$

= $\sum_{n=1}^{\infty} \frac{8}{\pi} \cdot \frac{1}{n^2} \sin\left(\frac{n\pi}{2}\right) \cdot \sin(nx)$
= $\frac{8}{\pi} \left\{ \sin(x) - \frac{1}{9}\sin(3x) + \frac{1}{25}\sin(5x) - \frac{1}{49}\sin(7x) + \cdots \right\}$